
Cashing out the Great Cannon?
On Browser-Based DDoS Attacks and Economics

Giancarlo Pellegrino
Saarland University

gpellegrino@mmci.uni-
saarland.de

Christian Rossow
Saarland University

crossow@mmci.uni-
saarland.de

Fabrice J. Ryba
Freie Universität Berlin

fabrice.
ryba@fu-berlin.de

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-
hamburg.de

Matthias Wählisch
Freie Universität Berlin
m.waehlisch@fu-

berlin.de

ABSTRACT
The Great Cannon DDoS attack has shown that HTML/JavaScript
can be used to launch HTTP-based DoS attacks. In this paper, we
identify options that could allow the implementation of the general
idea of browser-based DDoS botnets and review ways how attackers
can acquire bots (e.g., typosquatting and malicious ads). We then as-
sess the DoS impact of browser features and show that at least three
JavaScript-based techniques can orchestrate clients to send thou-
sands of HTTP requests per second. Seeing the vats potential, we
evaluate the economics of browser-based botnets and show that their
cost are about as high as traditional DDoS botnets—while giving far
less flexibility in terms of attack features and control over the bots.
Finally, we discuss victim- and browser-side countermeasures.

1. INTRODUCTION
Distributed Denial-of-Service (DDoS) attacks continue to be a

severe problem to the Internet. In April 2015, researchers observed
a new type of DDoS attack, coined the Great Cannon [1]. Here,
a powerful attacker injected malicious JavaScript code into HTTP
traffic. The malicious code turned browsers into DoS clients by
aggressively requesting web resources from victims. The Great Can-
non thus acted as man-in-the-middle and was reported to manipulate
web communication at Chinese ISPs to attack GitHub.

We envision that even less powerful adversaries can launch sim-
ilar browser-based DDoS attacks. The Great Cannon incident has
illustrated that web clients can serve as DoS bots—even without
being compromised by malware. Attackers have abused the feature-
rich communication API of browsers to launch DoS attacks, similar
to how traditional DDoS botnet would operate. Actually, Grossmann
and Johansen already presented this kind of threat at Black Hat USA
2013 [2], showing that attackers can inject malicious ads to launch
DDoS attacks. Kuppan mentioned HTML5 even at Black Hat 2010
as a potential vector for DDoS attacks [3]. However, while the gen-
eral attack principle is already well-known [4], there is no systematic
understanding of which browser features may be (ab)used in such
attacks. Right now, only anecdotal reports show that certain browser
APIs can be abused, but without giving sufficient detail. Moreover,
browser-based DDoS attacks seem promising also to less powerful
actors, such as cyber criminals with economic incentives. However,
little is known about the usefulness (and costs) of browser-based
DDoS attacks for “typical” cyber criminals.

In this paper, we aim to close this gap. We start by exploring
ways how cyber criminals may actually attract DoS clients, similar
to their need to establish a traditional botnet (§ 2). For example,

we review typosquatting and injection of malicious ads as potential
methods to acquire new browser-based bots. We then systematically
review features of modern browsers that could be used for attack,
such as JavaScript APIs (e.g., XMLHttpRequest, WebSocket). Next,
we measure how dangerous these features actually are in a DoS
attacks. That is, in a local experiment, we measure the potential
request rates of these attacks and discuss the evasion flexibility they
offer (e.g., manipulation of HTTP headers).

Second, we provide an economic comparison between traditional
DDoS botnets and advertisement-driven browser-based botnets (§ 3).
We aim to answer the following research questions. What are the
costs for operating the two types of botnets? How long do bots stay
online, once acquired? And is it likely that profit-maximizing cyber
criminals will jump on the wagon of attacks like the Great Cannon?
We approximate the costs for both malware-driven and browser-
based DDoS botnets. Our results show that costs are comparable,
ranging between $0.006 and $0.014 per day and attack source.

We conclude with a discussion on defenses against browser-based
botnets (§ 4). We discuss defenses from the victim’s point of view
(such as header-based filtering), and present ideas on how current
browsers can be adapted to mitigate such kind of attacks.

Our summarized contributions are as follows:

1. We systematically review browser features that may support
browser-based DDoS attacks and measure their impact.

2. We approximate and compare the costs for malware- and
browser-based DDoS botnets.

3. We discuss potential client- and victim-side defenses against
browser-based DDoS attacks.

Our preliminary results show that there are still several open ques-
tions, which should be tackled by the research community. In this
paper, we strongly advocate for continuing the systematic analysis
of this threat landscape to increase trust in the web ecosystem.

2. BROWSER-BASED DDOS BOTNETS
The Great Cannon attack has revealed the vast potential of abus-

ing normal web clients as weapon in DDoS attacks. We will revisit
such browser-based DoS attacks from a different attacker model, in
that we assume an attacker with economical incentives. According
to most analyses, the Great Cannon attack was only possible be-
cause ISPs actively manipulated web traffic. The attacker(s) injected
JavaScript code to normal websites that would launch DDoS attacks

1

towards certain targets. In contrast, we assume an attacker with sig-
nificantly less power, with the goal to assess if browser-based DDoS
attacks may even attract other types of attackers. In Section 2.1, we
thus discuss how an attacker can rent or invest in clients—instead of
just hijacking them via traffic manipulation.

Furthermore, in Section 2.2, we will investigate various methods
how an adversary can leverage HTML or JavaScript code to perform
DoS attacks. Then, we will compare these attacks with features of
traditional malware-based DoS bots.

2.1 Acquisition of Browser Bots
In order to launch a browser-based DDoS attack, the first step an

attacker has to perform is acquiring an army of bots. In our con-
text, bot refers to web clients that can be instructed using common
HTML/JavaScript code. Note that we do not require to compromise
the host, i.e., the browser-based bot is different from the malware-
infected host. Still, how can an adversary find bots to launch a
DDoS attack? We imagine a few methods an attacker might use, as
presented in the following:
Typosquatting—First, an attacker could leverage typosquatting [5,
6] to obtain new clients that mistype a domain they wanted to visit,
i.e., registering domain names that are similar to well-known sites.
Once the clients visit the web site, the attacker would try to increase
the time the user stays on this website. For example, the adversary
may show the correct content via HTML <iframe> tags, hiding
the fact from the user that she actually is on a fake website.

Popular typosquatting domains are already pre-registered by the
owners of the correct domains or by attackers. However, the web
domain space is large and an attacker may fish in the long tail. Do-
main tasting (i.e., temporarily registering domains) is not prohibited
in general. For country code top-level domains, ICANN charges
a surcharge of $0.20 per domain. For a domain at registrars such
as Dynadot, this leads to overall costs of $1.00-$5.00. Assuming
$2.5 on average and 10 visitors per domain/day, a quick back-of-the-
envelope analysis shows that an attacker could easily instruct 4,000
clients with a budget of $1,000. Our preliminary measurements
indicate that 10 visitors per day are reasonable for typosquatting do-
mains that have been selected in a plain, non-sophisticated way—we
expect significantly more visitors with carefully selected domains.

However, this field needs further research in several directions:
How many users can be gathered in parallel and how long do the
users stay on such sites? Which domains should be registered? We
leave these questions to future work.
Instrumenting Machine-Generated Visits—Another way to at-
tract clients is making websites popular (e.g., using SEO) and then
try to catch machine-generated visitors, such as crawlers. As soon as
a webpage is registered with a search engine or linked to another site,
this page is likely to be scanned by crawlers or even attackers that
scan for known vulnerabilities or backdoors. On arbitrary requests,
the botnet controller can deliver pages including external references.
Hijacking Popular Websites—Since many years, attackers have
hijacked well-known websites to exploit their visitors via drive-by
downloads. Instead of infecting the clients, attackers could just
inject some JavaScript code to the HTML structure of the website,
which renders the attacking code.
Instrumenting Ad Networks—Finally, we discuss how to use ad
networks to obtain browser-based bots—a technique that we will
analyze in more detail in this paper. Online ads are important
building block in the business chain of the web ecosystem. Ad
networks provide a convenient way to distribute advertisements to
a large crowd of users. Beneficial for the potential attacker is that
ad services such as the Google Display Network charge users only

per-click and not per-view basis. Pay-per-click ads are especially
appealing to an attacker, as this allows to inject malicious code that
is only viewed by clients and thus does not introduce additional
costs.

2.2 Browser as a Bot
Next, we are going to compare browser-based DDoS attacks with

attacks that DDoS botnets can launch.
DDoS botnets span malware-infected hosts that are specialized in

the execution of distributed denial of service attacks. Typically, the
bot master dispatches the target coordinates and the type of attack to
each bot. Bots can perform a variety of attacks, such as SYN floods
or requesting web resources via HTTP. Additionally, bots can vary
each attack to evade detection and increase its effectiveness.

In contrast to malware, browser-based DoS attacks have limited
flexibility. Here, we assume that the attacker does not exploit the
browser, but just uses some active code (such as JavaScript) to
launch an attack. In the following, we revisit communication fea-
tures of modern web browsers and discuss to what extent they can
be leveraged in DoS attacks. We aim to reproduce HTTP-based DoS
attacks that are also common in modern botnets, such as Yoddos
or DirtJumper [7, 8]. That is, we will discuss how we can generate
DoS-like request behaviors purely by using a non-compromised
browser. We chose to focus on JavaScript-based attack code due to
its popularity and wide availability.

2.2.1 DoS-Enabling JavaScript Features
JavaScript programs can issue HTTP requests via APIs designed

for the network communication such as XMLHttpRequest and Web-
Socket. Furthermore, JS programs may use other APIs that impli-
citly result in sending HTTP requests. For example, the JS program
can modify the content of the src attribute of the tag, and
as a result, the browser will issue an HTTP request to fetch the con-
tent of src. In the following, we will describe four APIs that can be
abused to launch HTTP(S)-based DoS attacks: XMLHttpRequest
(XHR) API [9], the WebSocket (WS) API [10], and Server-Sent
Event (SSE) [11], and the Image API [12].
XMLHttpRequest—This API is used to send asynchronous re-
quests to the server side of a web application [9], i.e., XHR requests:

1 var target = "http://$target/";
2 var xmlhttp=new XMLHttpRequest();
3 xmlhttp.open("GET", target);
4 xmlhttp.send();

As opposed to the other three JS features, the XMLHttpRequest
API allows a JS program to control some headers and the request
method of the HTTP request. For example, the JavaScript program
can set an arbitrary HTTP body and content type, and, it allows to
set a few HTTP request headers, e.g., the request content type [9].
WebSocket API—WebSocket allows the client and the server side
of a web application to establish a full-duplex stream-oriented com-
munication channel [10], i.e., a web socket. WebSocket is an ex-
tension of the HTTP protocol in which first the parties perform a
handshake and then can stream data over the web socket.

As the WebSocket handshake involves HTTP requests, an attacker
may use XHR requests to initiate a web socket. To avoid that, the
handshake implements a protection mechanism which leverages
on additional headers that cannot be modified by client-side pro-
grams [10]. Unfortunately, the WebSocket protocol specifications
do not describe any mechanism to protect non-WebSocket servers
from malicious WebSocket clients. Malicious JS code may misuse
the handshake by requesting resources hosted by a non-WebSocket
server. Such server may ignore the characteristic web socket HTTP

2

headers, and thus it can accept WebSocket handshake HTTP re-
quests as normal HTTP requests. A malicious JS program can
misuse the WebSocket protocol as follows:

1 var target = "ws://$target/";
2 var websocket = new WebSocket(target);

The variable target contains the URL of the target. WebSocket
URLs use the HTTP scheme ws:// or wss://. The scheme
ws:// resolves the default TCP port 80 and refers to a WebSocket
server that does not use any secure transportation layers. Instead,
the scheme wss:// resolves the default TCP port 443 and relies
on SSL/TLS. Our example code instantiates a WebSocket client and
passes the variable target. As a result, the web browser will start
the WebSocket handshake with the target. Although the web server
is a non-WebSocket server, it will process the HTTP request as a
valid request.
Server-Sent Event API—SSE is a communication API which al-
lows a JavaScript program to receive a stream of events from the
server side [11]. The channel is established similarly as seen before
for the WebSocket. First, the browser sends and HTTP request to the
server, which dispatches server events. Then, the server responds
with an HTTP response and a stream of events. SSE may also be
abused by a malicious JS program in an attack:

1 var target = "http://$target/";
2 var source = new EventSource(target);

Image API—The Image API is a JavaScript-based interface to the
 HTML tag [12]. A malicious JavaScript program can abuse
the Image API. For example, instead of providing the URL of an
image, it can provide the URL of the target to attack as follows:

1 var img = new Image();
2 img.src = "http://$target/";

In this fragment of code, the JavaScript code initializes a new
Image object. Then, it sets the src property of the Image class
with the absolute or relative URL of the image—the target. When
the browser interprets this fragment of code, it will issue an HTTP
request for the resource / from $target.

2.2.2 API Aggressiveness
To launch successful DoS attacks, an attacker needs to instrument

a client to send many HTTP requests. While we found that four
JS APIs allow us to send HTTP requests in principle, we need to
measure their “aggressiveness”. In this section, we will describe an
experiment to measure the request rates that the four APIs offer.
Testbed—In our experiments, we used a server (the target) and a
client (the HTTP bot) connected to a Gigabit LAN. The server is an
Intel Xeon dual-core 2.50GHz with 8GB of RAM. The client is a
quad-core Intel i7. We set up Lighttpd [13] on the server listening
to four TCP ports. We then configured the firewall to change the
states of the four TCP ports to the following: open port (accept
connections), ignore incoming packets (drop), respond with ICMP
host unavailable, and finally, with a TCP reset packet.

The client was set up with Mozilla Firefox 37.0.2 and Google
Chrome 42.0.2311.135. Then, we instrumented each browser with
a JavaScript code that was constantly establishing requests for a
run-time of 60 seconds. First, we wrote the malicious script to
continuously invoke API calls. However, this approach causes the
browser to stall or even crash. We modified this approach by setting a
maximum number of API calls per second that the malicious scripts
intends to send. We considered four different API call frequencies:
1000, 2000, 3000, and 4000 calls per second. In our tests, we also
used web workers in order to parallelize the API calls. We used 0, 2,

and 3 web workers. For each test, we captured the network traffic
for further analysis.
Results—The result of the analysis is shown in Tables 1 and 2.
Table 1a shows the aggregated results. Table 1b details the attacks
via a single-threaded JavaScript program (no web workers). Table 2
shows the results with a varying number of web workers.

Table 1a shows the results of our tests per browser and per TCP
port states. The columns [Reqs/s] is the average number of HTTP
requests per second whereas [SYN/s] is the average frequency of
TCP SYN packets sent to the server.

When the TCP port is open, the XMLHttpRequest can generate
1,000 and 2,100 HTTP requests per second with Chrome and Firefox,
respectively. The WebSocket API turns out to generate less than
35 req/s with Chrome and almost zero request with Firefox. This
is caused by the behavior of Firefox upon failure in setting up a
WebSocket. In our experiments, we use the WebSocket handshake
to request resources to a non-Websocket server. This causes the
WebSocket handshake to fail. When this happens, Firefox introduces
delays between consecutive attempts. This delay reduces drastically
the number of requests per second that the browser issues. Then,
the Server-Sent Event API can produce 210 and 250 requests per
second for Chrome and Firefox, respectively. Last, the Image API
can generate about 80 and 750 requests per second. Table 1 shows
also that the number of SYN packets rate is about the same for HTTP
requests. This behavior is caused by the fact that the server does not
use persistent TCP connections with the browser. This means that
the server terminates the TCP connection after sending the HTTP
response. However, if the server supports persistent connections,
the number of SYN packets per second reduces drastically1. In our
experiments, we observed that the number of SYN packets reduces
of about x13 for the XHR, SSE, and Image API. However, in the
case of WS the number of SYN packets per second remains the same.
This is caused by the errors during the creation of a web socket. As
mandated by the WebSocket protocol, the party detecting the failure
terminates the TCP connection. As opposed to the frequency of
SYN packets, the number of sent requests slightly increases. For
example, in about 70% of our experiments the number of requests
per second increases of a multiplicative factor between x1.01 and
x2.

When the TCP port is either in a packet drop or reject state, the
requests and SYN rates are negligible. However, when the kernel
sends TCP RST packets for closed TCP ports, our the JavaScript
APIs almost consistently exhibit a very aggressive behavior. Even as
compared to the “Open” state, the SYN packets frequency is signific-
antly higher. This is caused by the fact that browsers typically limit
the number of parallel connections, whereas the connections (due to
the RST) early leave this stage—and new connection attempts are
established. It is worth to point out that SYN floods are not really a
security issue if the port is in a packet drop, reject, or reset state.

Finally, Table 1a shows that Firefox, in general, performs better
than Chrome with speeds that are 2x and 9x faster than Chrome.

Table 1b shows the results of our test when no workers are not
used. The column Avg. [Reqs/s] is the average HTTP request per
second when calling 1000, 2000, 3000, and 4000 times per second
the API functions. The column Max [Reqs/s] is for the maximum
values. With exception of the WS API, Firefox achieved the highest
request per second rate of our experiments. Firefox can sent requests
per second with a rate of about 2,800 Reqs/s with the XHR API,
1,900 Reqs/s with SSE API, and 1,900 Reqs/s with Image API.
These values are in average 7x faster than the speed of Chrome.
By comparing the SSE results of Firefox between Table 1a and

1These results are not shown in Tables 1 and 2

3

TCP port states

Open Drop Reject Reset
[Reqs/s] [SYN/s] [SYN/s] [SYN/s] [SYN/s]

XHR Chrome 1,005.30 1,012.47 0.60 2.76 2,102.14
Firefox 2,165.76 2,166.43 0.60 4.42 4,821.30

WS Chrome 34.65 34.65 0.09 1.45 37.45
Firefox 0.04 0.04 0.19 0.04 0.04

SSE Chrome 210.69 211.12 0.60 2.82 529.27
Firefox 258.69 259.60 0.20 0.91 912.09

Image Chrome 84.60 84.65 0.63 2.73 161.40
Firefox 751.15 751.21 0.60 5.43 2,237.81

(a) Results grouped by TCP port state. Values are the average values with 0, 2,
and 3 web workers (except for the Image API), and with 1000, 2000, 3000, and
4000 API calls per second.

TCP port state

Open
Avg. [Reqs/s] Max [Reqs/s]

XHR Chrome 1,359.59 1,886.33
Firefox 1,456.74 2,892.03

WS Chrome 58.31 73.47
Firefox 0.12 0.13

SSE Chrome 399.97 941.58
Firefox 776.07 1,907.48

Image Chrome 84.60 109.38
Firefox 751.15 1,916.28

(b) Excerpt of results only for TCP port open and no
workers.

Table 1: Aggressiveness of JavaScript APIs as implemented by Chrome and Firefox.

Table 1b, it emerges that the average number of requests per second
in Table 1b is considerably greater than Table 1b. This difference is
caused by the fact that in Firefox the Server-Sent Event API is not
available within Web Workers.

Table 2 shows the results with different web workers. With the
XMLHttpRequest API, Chrome and Firefox present an opposite
behavior. While with the increase of workers Chrome decreases the
number of requests per second, Firefox slightly increases the packet
rate. Chrome also exhibits a similar behavior with the WebSocket
and SSE API. As said before, Firefox has negligible request rates
with WebSocket, whereas with SSE can generate about 800 Reqs/s
without workers. As explained before, Firefox does not allow the
access to the SSE API within web workers. As a result, the number
of requests per second is zero. Finally, the results with the Image
API are the one showed in Table 1b with no workers. According to
the Web Worker specifications, web workers have no access to the
DOM which includes the Image interface. As a consequence, we
did not perform tests with web workers.

2.2.3 Further Attack Features and Filter Evasion
DDoS attacks are more effective if adversaries can hide their

malicious traffic within benign traffic. Whereas a traditional DDoS
bot has all the flexibility to generate HTTP(S) traffic, this is not
the case for browsers. In this section, we will discuss if (and how)
evasion techniques could be implemented.
Arbitrary Referer and Host headers—One of the DDoS com-
mands of traditional bots is issuing HTTP requests with custom-
chosen Referer and Host header. JavaScript programs can
modify HTTP request headers only with the XMLHttpRequest API.
However, the JavaScript program cannot modify all the HTTP re-
quest headers. There is a blacklist of headers that cannot be modi-
fied, including Referer and Host. This may leave defenders are
valuable angle to characterize malicious communication.
Requests with no Response—Second, some DDoS bots feature an
attack type that requests resources via HTTP, but does not wait for
the responses. The motivation behind this CPU or memory exhaus-
tion attack is that the server has to fetch the requested resources
(which may be large), and the client does not need to receive it.
We thus inspected if JavaScript code can interrupt the TCP socket
before the HTTP response is entirely received. A bot can interrupt a
TCP socket in different ways (e.g., by sending an RST or by drop-
ping incoming TCP packets without acknowledging their reception)

Workers [Reqs/s] [SYN/s]

XHR Chrome 0 1,359.59 1,370.11
2 966.69 973.51
3 689.63 693.80

Firefox 0 1,456.74 1,456.66
2 2,424.13 2,425.50
3 2,616.40 2,617.14

WS Chrome 0 58.31 58.31
2 29.30 29.30
3 16.33 16.33

Firefox 0 0.12 0.12
2 0.00 0.00
3 0.00 0.00

SSE Chrome 0 399.97 400.92
2 155.05 155.27
3 77.05 77.19

Firefox 0 776.07 778.81
2 0.00 0.00
3 0.00 0.00

Image Chrome 0 84.60 84.65

Firefox 0 751.15 751.21

Table 2: Aggressiveness correlated with the number of workers.
The average number of requests is calculated between the values
when invoking 1000, 2000, 3000, and 4000 times per second the
API calls.

and in different moments (e.g., before the reception of the HTTP
response or after the reception of the first packet of the response).
In this section, we details these two aspects.

While a traditional bot has direct control of TCP connections
and it can terminate them in many ways (e.g., TCP RST, TCP
FIN), a client-side JavaScript program cannot directly setup TCP
connections2 and it relies on high-level communication APIs which

2The W3C is working on a draft to standardize TCP and UDP
sockets [14]. Browsers supports TCP and UDP sockets however,
their access is limited to extensions or to privileged external applica-
tions [15, 16].

4

abstract away the details of the underlying TCP connection. These
APIs provide primitives to abort a request or to close the connection.
For example, the XMLHttpRequest API allows to abort an XHR
request via the abort function. Similarly, the WebSocket API and
the Server-Sent Event API have a close function. Protocol and
API specifications do not mandate the specific technique to terminate
a TCP connection upon the call of these functions. However, in
our experiments we observed an uniformity of behavior between
Chrome and Firefox—both browsers terminates the TCP connection
with a RST packet.

After clarifying how to close connections via JavaScript, we now
elaborate when this can be done. A traditional bot can terminate the
TCP connection at any point in time, e.g., right after sending the last
TCP packet of the HTTP request, or right after receiving the first
TCP packet with the HTTP response. In contrast, the JavaScript
communication APIs do not allow a direct way to control in which
point the connection can be closed. However, an attacker can con-
trol disconnects by scheduling timeouts (e.g., via setTimeout).
While a short timeout can cause to reset the connection right after
the TCP handshake, a longer timeout can cause the browser to re-
ceive the entire HTTP response. In order to send the RST packet in
the right moment, an attacker may need to estimate the timeout by
monitoring the response time of the target.
IP Spoofing—IP source address spoofing is frequently used by
attackers to hide their identity or to launch amplification attacks [17].
While potentially possible for a traditional DDoS bot, it is not
possible to send IP-spoofed traffic via JavaScript, though.

3. DDOS BOTNET ECONOMICS
In this section, we will measure the costs of running browser-

based as compared to the costs of traditional malware-infected bot-
nets. This will help to understand if the attackers may have an
economical incentive to resort to browser-based DDoS attacks (as
opposed to buying malware installations).

3.1 Costs for Browser-Based Bots
For our preliminary measurements, we deployed four advertise-

ments in the Google Display Network from May 10-17, 2015. We
explicitly followed a conservative model in the sense of simple ad-
vertisements and a non-sophisticated attacker strategy. Using this
approach we gain insights into the ad network without assuming ex-
perienced attackers, which is in line with our perspective of attacks
for the mass.

Each advertisement includes HTML or JavaScript code to request
resources from an external monitor server, in detail:

Ad 1 requests a URL in the static structure of the HTML page;

Ad 2 requests a URL via the JavaScript interface of HTML tags;

Ad 3 requests every five seconds a resource as in Ad 2;

Ad 4 sends a single content request using API designed for com-
munication, i.e., the XMLHttpRequest API.

The different access mechanisms allow us analyze both the local
configuration of the users as well as protection mechanisms of the
ad network. Ad 3 enables us to measure the session time, i.e., how
long a user stays on the site that shows the advertisement.
Deployment Experiences—Advertisement are verified by Google
before they are officially published. Our advertisements have been
accepted within 30-40 minutes. Deploying a malicious ad campaign
is thus possible on short notice.

To evaluate the complexity for an attacker to inject a malicious
advertisement, we tried to derive a basic understanding of the veri-
fication process, i.e., if the verification is handled manually or auto-
matically. For this we uploaded complementary advertisements
that are copies of Ad 1-4 but refer to a different landing page in
case a user clicks the ad. This landing page reflects the content of
the original landing page but makes the content invisible. These
incorrect advertisements have also been accepted. We suppose that
the verification process is performed by rather simple processes
such as pattern matching rules. Any advanced check, in particular a
verification by a human, could easily reveal our trap.
Client Statistics—Over one week of measurements, the ad network
generated 32,932 requests to our external server. Those requests res-
ult from only presenting the embedded advertisement on a customer
page of the ad network. In addition, we measured 174 requests that
result from clicks. It is worth noting two observations. First, Google
Display follows a pay-per-click (ppc) model, leading to very low
costs of ≈$1.23 in our case, i.e., four advertisements initiated overall
33k requests to an external server. Second, we could easily increase
the number of requests by changing our HTML/JavaScript code. An
increased number of requests will increase the attack potential but
not affect the costs as requests initiated by our ads are independent
of clicks.

Surprisingly, the number of requests varies significantly per day
and advertisement type (HTML, JavaScript, and XHR). Content is
not loaded via XHR requests (Ad 4), and content requests using
plain HTML (Ad 1) is more evenly distributed (cf., Table 3).

In the next step, we focus on dedicated users by analyzing client
IP addresses in more detail. Figure 1 shows how long a client was
viewing an advertisement on average, based on the data Ad 3 creates.
The box plot visualizes the mean (square), median (line), and the
25- and 75-percentiles of the gathered data. Note that we cut the
y-axis for visibility reasons. The maximum value for May 10 is
785 minutes.

Overall, a significant distribution among the clients is visible,
which is not surprising for two reasons. First, users behave quite
differently when viewing web content. Second, when a user changes
a web site depends also on the presented content (e.g., news site
versus search website). However, in our current setup we cannot
control on which website the advertisement is embedded.

We compared the number of sessions per client with the number
of impressions provided by Google and found that Google indicates
much higher number of visits. It is rather unlikely that this is due
to ad blockers because those tools use black lists and thus do not
prefetch code. For Ad 2-4 this might be due to disabled JavaScript
at the client-side, which then leads to less external requests at our
monitoring server. For Ad 1, which is using plain HTML, we would
expect less deviation. Using the Google impression statistics for the
estimation of the attack impact leads to overestimated results. This
observation nicely illustrates that the design of our methodology
(i.e., relying on an external monitor) was crucial.

More surprisingly is that the number of unique clients heavily
depends on the day (cf., Table 3). For an attacker, this complicates
predictions about the size of the botnet.

Finally, we analyze the distribution of the geographic location of
the clients using the MaxMind IP to country mapping. Around 80%
of the IP addresses viewing our ads are assigned to Russia. Among
the remaining top ten countries are also Germany, Switzerland, UK,
and France. All of these countries provide good Internet connection,
which will allow the attacker to initiate even large volume content
access.

Our current results can be considered as the minimum attack
potential, which is already high. Only less than 1% of the users of

5

External Requests [# GET and HEAD] Clients [# Unique IP Addresses] Budget [$]

Day Ad 1 Ad 2 Ad 3 Ad 4 Sum Ad 1 Ad 2 Ad 3 Ad 4 Ad 1 Ad 2 Ad 3 Ad 4 Sum

05/10 243 2 24,076 0 24,321 122 2 69 0 0.05 0 0 0 0.05
05/11 232 0 182 0 415 116 0 2 0 0 0 0 0 0
05/12 262 1 3129 0 3,399 169 1 3 0 0.23 0 0 0 0.23
05/13 2,170 8 80 0 2,252 774 3 5 0 0.59 0 0 0 0.59
05/14 1,112 2 459 0 1,573 759 2 2 0 0.07 0 0 0 0.07
05/15 515 0 0 0 515 384 0 0 0 0.05 0.03 0 0 0.08
05/16 412 2 0 0 414 318 2 0 0 0.06 0 0.02 0 0.08
05/17 43 0 0 0 43 40 0 0 0 0.11 0 0.02 0 0.13

Table 3: Overview of attack potential per advertisement and day measured at our external monitor.

0 5 / 1 0 0 5 / 1 1 0 5 / 1 2 0 5 / 1 3 0 5 / 1 4
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 D a t e [m m / d d]

Se
ssi

on
 Ti

me
 [m

]

Figure 1: Statistical overview: Duration in minutes a client sees Ad 3

Ad 3 click the advertisement, where each click costs ≈1 cent. The
attacker is able to attract up to 69 users per day. In the best case a
web client was under the control of the attacker for up to 13 hours.
These preliminary results indicate that an attacker may achieve much
higher impact with more sophisticated malicious advertisements.
On the client recruiting side, an attacker could try to create less
attractive ads to reduce the probablity of clicks (i.e., costs) or try to
control ad replacement with respect to more frequently visited pages.
On the ad programming side, the attacker could simply increase the
number of initiated requests. By comparing Ad 1 with Ad 2 and 3
we already found that the amount of clients differs. Implementing a
much more aggressive request scheme in Ad 1 could lead to higher
attack potential but we do not have experiences how the ad network
react on this. We will focus on a more complete anatomy of ad
networks in future work.

To summarize, we found varying viewing behaviors for the ads
we injected. When computing the costs for brower-based botnets,
we focus on the results of Ad 3, as this advertisement allowed
us to track the viewing time of the instrumented clients. For the
accumulated online time of all clients (27,926 minutes), this specific
ad cost $0.04. On average, an attacker has to pay a risk budget of
$0.002 per day and source.

3.2 Costs for DDoS Malware
Previous studies found out the price for malware installations

in the underground range between $6 and $140 per 1000 installa-
tions [18]. Still, it is unclear for how long an attacker can abuse

these bots once he bought them. We thus measured how long a
traditional malware-infected bot would stay online. To this end, we
leverage our data set from our infiltration of the Zeus P2P botnet
with sensors in October 2013. This data set constitutes one of the
very few sources to measure the uptime of malware-infected hosts,
in particular since Zeus-infected host have a unique identifier that
allows us to track individual bots. Albeit Zeus P2P has not been
used for DDoS attacks frequently—in fact it had the capability to
perform such attacks—we assume that populations of other botnets
behave similar. On average, a bot stays online for 11.9 hours per day,
i.e., about half a day. In addition, we observed that 63.5% of the bots
are still infected after 1 week. This is along the lines of our previous
observation that the Zeus P2P botnet population fluctuates about
5% [19] per day. We thus estimate that—with a single infection—a
bot remains operative for about 20 days, resulting in about 10 days
of an online bot. Combining both observations, we conclude that
traditional malware costs between $0.0006 and $0.014 per day and
source—assuming of full utilization of the bot whenever it is online,
and considering infection costs of $0.006 and $0.14 per bot.

3.3 Economics Analysis
We now compare the costs for the deployment of malicious ads

with the deployment of traditional malware by a brief back-of-the-
envelope calculation. In fact, we found that the costs for both
botnets are comparable—between $0.006 and $0.014 per day and
attack source. Browser-based botnets are cheaper than infections
in high-cost countries (like the US), but are more expensive than
botnets in countries for which pay-per-install (PPI) installation cost
less [18]. However, our economic analyis is clearly limited. First, we
only compared the prices of one PPI network with one ad network.
Second, attacks may actually build up DDoS botnets for free (e.g.,
by infecting embedded devices with default logins). Last, we did
not try to improve our ad to make it less attractive to being clicked
on in order to reduce the pay-per-view price. Still, we show that the
costs are largely similar.

However, the functionality of browser-based bots is limited com-
pared to traditional bots, as the common web API exposes less func-
tionality. For example, malware may monetize in more ways than
just DDoS attacks (e.g., ID theft or spamming), whereas browser-
based botnets are most suitable for DDoS. Then again, considering
that new web technologies, such as WebRTC, offload system func-
tionality into the web browser, we can expect a rich set of interfaces
in the near future. Having a feature set comparable to malware
within a browser will increase the revenue of browser-based botnets.

Finally, the level of control for browser-based DDoS botnets is
limited. Most importantly, ad campaigns introduce a delay between
issuing and viewing the ad, whereas an attack using a DDoS botnet
can be started immediately via C&C commands. Another drawback

6

of ad networks is that they are less predictable how many bot clients
are recruited, and the number of simultaneously-running bots is low.
Our preliminary results showed that there is room for optimization,
e.g., by making the ad more attractive to be displayed by investing
higher ad costs or spreading the ad among multiple ad networks.

4. CONCLUSION AND OUTLOOK
We have discussed browser-based DDoS botnets, a serious threat

to the Internet. We have shown that the attack does not introduce
higher costs at the side of the adversary. Instead, the attacker model
is in line with requirements (expertise, money, etc.) of our threat
model. However, we have also shown certain limitations to browser-
based botnets, both regrading the attack flexibility and the way the
bots can be controlled. In the following, we will nevertheless discuss
ideas to mitigate some of the problems of DDoS-based botnets. We
will finally conclude this paper with an outlook to future work.

4.1 Attack Mitigation
Rate Limiting—We analyzed for two common browsers (Chrome,
Firefox) how many media items are allowed to be loaded in parallel
(e.g., img src=""). All of them had a limit of six but we also
found that loading via JavaScript is less limited. Such a limit needs
always to be considered with respect to the quality of experiences for
a user. It is very likely that this limit will be increased in the future,
in particular with an increased deployment of multipath transport.
Partial Cross-Origin Resource Sharing—Disabling cross-origin
resource sharing (CORS) prevents a client from loading resources
located under a different origin than the origin of the webpage. All
modern web browser allow for cross-origin resource sharing by
default, at least for non-AJAX content. However, due to Content
Delivery Networks (CDNs), and due to the tendency to of external
resources (e.g., CSS), the web heavily requires support of CORS—
disabling CORS would be too restrictive.

A compromise might be partial CORS. The current CORS mech-
anism requires interaction between client and server, where the
server signals legitimate cross domains and the browser might pre-
vent content rendering. This mechanism implies the drawback that
the client still sends a request to the server. Here we propose the
idea of a local decision by the client. Instead of allowing requests
for arbitrary origins, one could allow only requests to domains under
the same administrative control. For example, a client would request
content from youtube.com embedded into a page in the origin
google.com, as both domains are managed by the same operator.

The verification if two domains belong to the same operator can
be implemented by the client using DNSSEC. Having such a name-
based attestation infrastructure in place, a client can check if two
different names have been signed by the same private key, which
belongs to the operator. Note that it is common practice among large
DNS operators to use the same zone/key signing keys for different
zones.3 Local DNS caching will help to reduce overhead.
Server-Side Filters—Finally, given the limited flexibility in chan-
ging the HTTP requests, browser-based DDoS attacks can be iden-
tified as such by filters. For example, the Origin header was
present both in the attack traffic by Great Cannon as in our test
attack traffic. This header reveals the server that instructed the
client to issue the HTTP request towards the victim, and is thus
descriptive—especially in case the attacking code is loaded from a
single server only (e.g., a single typosquatting domain, or a single ad

3For detailed discussion among operators about this topic, we
refer to http://lists.dnssec-deployment.org/
pipermail/dnssec-deployment/2010-March/
003704.html.

network). To the best of our knowledge, the attacking code cannot
overwrite the Origin header with an arbitrary URL. Still, such
filters may be too coarse-grained (e.g., blocking requests from entire
ad networks) and may also block benign clients. In addition, if
ad networks allow ads to be loaded from any external hosts, then
the Origin can be chosen by the attacker—while still requiring
multiple hosts or domains to vary the value.

Furthermore, servers can deploy rate limiting based on the HTTP
Referer header values. This header is inserted by the web browser
and frequently used. However, this might change in the future, as
the Referer conflicts with privacy concerns. Second, the browser
must not send a Referer field if the previous page was accessed
via HTTPS [20]. Third, with HTML 5, a website may include an
attribute that instructs the browser not to send the Referer field.

4.2 Future Work
In the future, we aim to improve our measurement on the at-

tack economics. We will add experiments of other ways to acquire
browser-based bots, such as typosquatting. In addition, to improve
the statistical significance of our cost estimations, we will expand
our measurements to multiple PPI and ad networks. Second, we in-
tend to analyze the potential of a peer-to-peer control layer between
web browser based on WebRTC. Third, we will investigate the
solution space to the browser abuses. So far, our ideas are just
hypothetical, and we plan to design more detailed schemes and
thoroughly evaluate them.

5. REFERENCES
[1] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune,

A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson, “China’s Great
Cannon,” Citizen Lab, University of Toronto, Technical Report, April
2015. [Online]. Available:
https://citizenlab.org/2015/04/chinas-great-cannon/

[2] J. Grossman and M. Johansen, “Million Browser Botnet,” in
Presentation at Black Hat USA 2013, 2013.

[3] L. Kuppan, “Attacking with HTML5,” in Presentation at Black Hat
2010, 2010.

[4] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis,
“Puppetnets: Misusing Web Browsers As a Distributed Attack
Infrastructure,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security, ser. CCS ’06, 2006.

[5] J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Félegyházi, and C. Kanich,
“The long "taile" of typosquatting domain names,” in Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014. Berkeley, CA, USA: USENIX Assoc., 2014, pp.
191–206.

[6] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven months’
worth of mistakes: A longitudinal study of typosquatting abuse,” in
Proceedings of the 22nd Network and Distributed System Security
Symposium (NDSS 2015). Internet Society, February 2015. [Online].
Available: https://lirias.kuleuven.be/handle/123456789/471369

[7] A. Welzel, C. Rossow, and H. Bos, “On measuring the impact of ddos
botnets,” in Proceedings of the Seventh European Workshop on System
Security, ser. EuroSec ’14. New York, NY, USA: ACM, 2014, pp.
3:1–3:6. [Online]. Available:
http://doi.acm.org/10.1145/2592791.2592794

[8] A. Büscher and T. Holz, “Tracking ddos attacks: Insights into the
business of disrupting the web,” in Proceedings of the 5th USENIX
Conference on Large-Scale Exploits and Emergent Threats, ser.
LEET’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 8–8.
[Online]. Available:
http://dl.acm.org/citation.cfm?id=2228340.2228351

[9] A. van Kesteren, J. Aubourg, J. Song, and H. R. M. Steen,
“XMLHttpRequest Level 1,”
http://www.w3.org/TR/XMLHttpRequest/, 2014.

[10] I. Fette and A. Melnikov, “The WebSocket Protocol,”
https://tools.ietf.org/html/rfc6455, 2011.

7

[11] I. Hickson, “Server-Sent Events,”
http://www.w3.org/TR/2009/WD-eventsource-20091029/, 2009.

[12] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara,
E. O’Connor, and S. Pfeiffer, “A vocabulary and associated APIs for
HTML and XHTML,” http://www.w3.org/html/wg/drafts/html/CR/
embedded%2Dcontent%2D0.html#dom%2Dimage, 2014.

[13] L. Developers, “Lighttpd,” http://www.lighttpd.net/, 2015.
[14] C. Nilsson, “TCP and UDP Socket API,”

http://www.w3.org/2012/sysapps/tcp-udp-sockets/, 2015.
[15] Mozilla Developer Community, “TCPSocket,”

https://developer.mozilla.org/en-US/docs/Web/API/TCPSocket, 2015.
[16] Google Inc., “Network Communications,”

https://developer.chrome.com/apps/app_network, 2015.

[17] C. Rossow, “Amplification Hell: Revisiting Network Protocols for
DDoS Abuse,” in Proc. of NDSS. Internet Society, 2014.

[18] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring
pay-per-install: The commoditization of malware distribution.” in
Proc. of USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, 2011.

[19] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. J. Dietrich, and H. Bos, “P2PWNED: Modeling and Evaluating the
Resilience of Peer-to-Peer Botnets ,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (S&P) , San Francisco, CA, May
2013.

[20] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content,” IETF, RFC 7231, June 2014.

8

