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Abstract. Virtualization has become an indispensable technique for
scaling up the analysis of malicious code, such as for malware analy-
sis or shellcode detection systems. Frameworks like Ether, ShellOS and
an ever-increasing number of commercially-operated malware sandboxes
rely on hardware-assisted virtualization. A core technology is Intel’s VT-
x, which — compared to software-emulated virtulization — is believed
to be stealthier, especially against evasive attackers that aim to detect
virtualized systems to hide the malicious behavior of their code.

We propose and evaluate low-level timing-based mechanisms to detect
hardware-virtualized systems. We build upon the observation that an
adversary can invoke hypervisors and trigger context switches that are
noticeable both in timing and in their side effects on caching. We have
locally trained and then tested our detection methodology on a wide vari-
ety of systems, including 240 PlanetLab nodes, showing a high detection
accuracy. As a real-world evaluation, we detected the virtualization tech-
nology of more than 30 malware sandboxes. Finally, we demonstrate how
an adversary may even use these detections to evade multi-path explo-
ration systems that aim to explore the full behavior of a program. Our
results show that VT-x is not sufficiently stealthy for reliable analysis of
malicious code.

1 Introduction

Malicious code continues to be a major security threat. The economics of cyber
crime tempt attackers to improve their attacks in both quantity and quality. As
such, analysts are confronted with a large number of sophisticated new attacks on
a daily basis. This sheer volume of threats renders manual analysis impractical,
which is why defenders seek to automate the analysis of potentially malicious
code. In terms of automated analysis, defenders usually prefer dynamic over
static analysis, since malware is usually heavily obfuscated [18, 21, 31]. While
ideas exist to cope with this problem [4,11,12,25,27,28], in practice, a satisfying
notion of static code analysis automation is still far from being established.

Dynamic analysis executes unknown programs in a controlled environment
and monitors this execution to look for malicious behavior. The large number of
dynamic malware analysis systems demonstrates their utility [6]. The security
industry has also taken up the concept of malware sandboxes and one can choose
from a variety of open-source and commercial systems, such as Cuckoo [19], Joe
Sandbox, GFI Sandbox, VMRay or FireEye.



Realizing the benefits of dynamic analysis, attackers started to evade sand-
boxes. Evasion enables an attacker to discover that the execution takes place in
a controlled environment and to suppress any malicious behavior because of this
insight. In its simplest form, evasion leverages the fact that most dynamic code
analysis systems use some kind of virtualization solution and that these solutions
usually come with artifacts such as specific device drivers or known hardware
serial numbers, for example. By probing for those artifacts, the attacker can
detect the analysis system and suppress any malicious behavior. Note that this
approach relies on the assumption that virtualized code execution is equivalent
to dynamic code analysis. While this is not generally true, e.g., due to cloud com-
puting, typically attack targets can be assumed to operate on native systems.
Virtual machine (VM) detection approaches are widely popular among attack-
ers in the wild. Malware (e.g., the families Dyre, CryptoWall, Shifu, Kronos and
Shylock) hide their actual behavior if they are executed in a VM.

When it comes to the choice of virtualization solution, defenders usually build
upon hardware-assisted virtualization techniques such as Intel VT-x or AMD-V.
Besides being faster due to hardware support, hardware-assisted virtualization
also greatly reduces the number of artifacts, giving the attacker less room for
simple evasion. Analysis systems such as Ether [5] and CXPInspector [30] use
VT-x to analyze malware in a transparent manner. The authors of Ether have
shown that malware that does not show behavior on other software-virtualized
systems suddenly becomes active in their systems, which highlights the impor-
tance of hardware-assisted virtualization.

In this paper, we therefore aim at a more generic form of evasion. While
an artifact indicates that the system might be virtualized, there is no semantic
connection between the presence of an artifact and the concept of virtualiza-
tion. Instead, we follow the intuition that virtualized guests operate more slowly
than native systems. To this end, we propose three timing-based and assembly-
level mechanisms to detect hardware-assisted virtualization from user space, i.e.,
without using privileged instructions. We first consider measuring the execution
time of special x86 instructions, that cause a trap to the hypervisor, which will
not occur during native execution. We then discuss how a hypervisor might try
to hide the involved timing artifacts, and propose a second detection technique
which exploits the Translation Lookaside Buffer (TLB) and which cannot be
protected against in the same fashion. We leverage timing differences during ac-
cesses to pages whose address translations have been cached in the TLB, but
whose cache entries a hypervisor has evicted due to the limited size of the TLB.
We then consider the stealthiness of those two approaches. Given that the first
two methods use special instructions excessively, we argue that those methods
are not stealthy. Therefore, we propose a third method which is stealthier in
that it limits the use of possibly suspicious instructions and resorts to a different
timing source.

We evaluate our methods on a large variety of native and VT-x-based systems
and show that the detection methods have a 99.4% true positive rate on average.
We then turn to a few practical use cases. First, we deploy our detection routine



on 31 public malware sandboxes, all of which we can detect using the described
methods. Second, we demonstrate that even a commercial sandbox with anti-
evasion features falls for our caching-based detection mechanism. Finally, we
show how an adversary may combine the detection results to evade multi-path
exploration systems and demonstrate this with the use case of ShellOS [29], a
VT-based shellcode detection framework.

2 Background

2.1 Hardware Virtualization

Most malware analysis systems that use hardware-assisted virtualization rely on
Intel VT (or VT-x) as an underlying virtualization technique. With VT-x, the
Virtual Machine Monitor (VMM, or hypervisor) can create and launch multiple
virtual machines. Once the VM is running, the guest can return to the hyper-
visor; this is called a VM Exit. The guest can explicitly invoke the exit handler
of the hypervisor, e.g., to establish communication between the host and the
guest. After the hypervisor has performed the desired operations, control can be
returned to the guest; this is called a VM Entry.

In addition to the explicit calls to the exit handler, the hypervisor also im-
plicitly traps in certain occasions. We will use exactly these implicit traps as
part of our timing side-channels, and thus briefly explain them in the following.
For example, VM Exits are implicitly caused if the guest executes a sensitive
instruction. This behavior is crucial, since it gives the hypervisor the chance
to emulate important data structures and monitor the VM. Intel specifies all
such VMM trap instructions in their manual. Since VM Exits are an inherent
difference between virtualized and native executions, we use them as a way of
detecting the presence of a VT-x hypervisor. While VT-x offers the possibility
to disable traps for some instructions, Intel enforces VM Exits on a selected set
of instructions in hardware. We also argue that in order to monitor the guest,
the hypervisor has to use some kind of traps, which also gives additional space
for evasion.

2.2 Translation Lookaside Buffer

One of the side effects of hypervisors that we will use targets the TLB, as outlined
in the following. Modern operating systems use the concept of virtual memory
to give each running process the impression of having a large contiguous space
of memory, whereas in reality there is a mapping between virtual and physical
memory in a non-contiguous manner. Resolving this mapping is called a page
walk. Since a page walk can be costly, hardware developers introduced the TLB,
which caches the mapping from virtual pages to physical pages. When a process
accesses a virtual address v, it first checks if the virtual page of v is in the TLB.
If it is, the physical address can be obtained from the TLB. Otherwise, the MMU
needs to do a page walk and then caches the result in the TLB. Therefore, when



accessing multiple addresses on the same page, it is likely that only the first
access is slow relative to all subsequent accesses, as long as the TLB entry is not
evicted in the meantime.

If we switch from a process p1 to a process p2 (context switch), the TLB will
most likely contain invalid entries, since p1 and p2 have their own virtual memory
and thus use different address space mappings. The simplest way to deal with
this problem is to completely flush the TLB upon context switches. However, this
strategy had severe performance penalties, as every VM Exit causes a context
switch. To cope with this problem, Intel introduced a feature called VPID. With
VPID enabled, the TLB entries are tagged with the ID of the virtual machine. As
a consequence, when a virtual address is accessed, the MMU will only consider
TLB entries which are tagged with the current VM’s ID. Hence, there is no need
to flush the TLB, resulting in better performance.

3 Threat Model

Throughout the remainder of this paper, we envision an adversary that has
implemented an arbitrary program (e.g., malware) and tries to detect if this
program is being executed in a virtualized environment. We aim to explore
generic evasion attempts, i.e., those that (i) do not focus on particular analysis
environments, but instead on inherent characteristics of such systems, (ii) an
approach that is independent from the malicious payload that the adversary may
aim to hide, and (iii) mechanisms that are not restricted to a certain operating
system. All these requirements make our methods applicable to a wide set of
programs, explicitly including typical malware targeting Windows or Linux.

Furthermore, we restrict ourselves to developing detection mechanisms that
operate purely in user mode, i.e., unprivileged code that executes in ring 3. This
assumption varies from existing approaches that aim to detect virtualization by
using privileged instructions, such as reading the contents of the page tables or
using nested virtualization. Approaches using privileged code (ring 0) are well
known to be effective, but may raise suspicions to an analyst or even during au-
tomated program analysis. In contrast, our assumption on user-mode execution
is in line with the use case of in-the-wild malware, such as a myriad of banking
trojans, droppers, clickbots, spambots, denial-of-service bots and even targeted
malware—all of which typically run in user space. The most notable exceptions
are malware families with a kernel-mode rootkit, which, however, could also use
our proposed user-mode detection methods. For example, a user-space dropper
could try to detect virtualization prior to installing further modules (such as
kernel-mode rootkits), such that the second- or third-stage malware samples are
not exposed to the analyst. In fact, this concept is common in the wild [15,26].

Finally, we assume that the actual target systems of an attacker, i.e., those
that the attacker aims to infect, are not virtualized. While it is conceivable that
an attacker may miss target systems that are indeed virtualized, widespread
malware will still be successful in infecting the vast majority of native systems.



4 Timing-Based VT-x Detection

VT-x was invented with the goal to increase the performance as well as the trans-
parency of virtualization. In this section, we aim to undermine that transparency
by proposing three timing-based methods to detect virtualization.

4.1 Measuring Elapsed CPU Cycles

The first two proposed detection methods are based on a technique to accurately
determine the execution time of machine code. To this end, we measure the
number of CPU cycles that elapse when a piece of code is executed. To do so, we
use the rdtsc instruction to read the CPU’s time stamp counter (TSC), which
is incremented every clock cycle. Upon execution of rdtsc, the edx register is
loaded with the high-order 32 bits and eax holds the low-order 32 bits of the
TSC. Reading the TSC before and after the machine code helps us to measure
the number of cycles that have elapsed. We can thus execute rdtsc, save the
TSC, execute the instructions to be measured, execute rdtsc again and subtract
the saved TSC from the current TSC. To get more accurate results, we need to
serialize the instruction stream to prevent out-of-order execution. We use the
mfence instruction, which will serialize rdtsc with respect to load-from-memory
and store-to-memory instructions.

This method over-approximates the execution time. This is a bias introduced
by the measurement code, which also consumes CPU cycles. If necessary, to
counteract this influence, we can measure the measuring overhead and subtract
it from the measured time. To this end, we measure how long it takes to execute
no code. We then subtract this overhead from subsequent measuring results to
get a more realistic measurement of the actual clock cycles. We will use this
technique for our implementation of a TLB-based VT detection that demands
a higher measuring accuracy.

Finally, measurements may not be accurate due to context switches that
occur during the measurement phase, in which another process would execute
and implicitly increase the TSC. To tackle this problem, we repeatedly measure
the same sequences of instructions, record the time of each execution, and then
use the minimum of all measurements. Our assumption here is that at least one
out of these many executions will not be clobbered by a context switch.

4.2 Method 1: Detecting VM Exit Overhead

Based on the timing measurements, we will now describe our first method to
detect hardware virtualization. We follow the intuition that a VM Exit consumes
CPU cycles. In particular, we leverage the fact that some CPU instructions
provoke a VM Exit, which does not occur on native systems. The Intel manual
specifies over 30 of such instructions, most of which are privileged and thus not
usable in ring 3. Also, trapping of some instructions can be disabled during the
VM setup phase. We will thus leverage cpuid, the only unprivileged instruction
whose hypervisor traps cannot be disabled.



A näıve approach to detect VT-x would be to measure the execution time of
a cpuid instruction and determine a threshold above which VT-x is detected.
The threshold could be determined by comparing the execution time on native
and virtualized systems. Whenever executing cpuid is below this threshold, the
environment is believed to be native, and virtualized otherwise. However, this
simple measurement suffers from the inaccuracy that the absolute execution time
of instructions varies per CPU type, and it is thus not trivial to determine a
reasonable absolute threshold. Instead, we follow the intuition that two different
instructions execute similarly slower or faster on a different CPU model. We
thus propose to compare the execution time of cpuid with the execution time
of another instruction in terms of a ratio.

We proceed as follows: We measure both cpuid and a baseline instruction i
times, compute the ratio and check if the ratio is larger than some threshold α.
We chose nop as the baseline instruction, but found that other fast instructions
are equally suitable (e.g., we experimented with add, lea, and sub). Given the
short execution time of the baseline instruction, the measurement overhead dom-
inates our measurements (as described in Section 4.1). Still, the execution time
of cpuid is significantly higher than the baseline instruction. Thus, we decided
not to deduct the overhead. To account for context switches, we compare these
two minima and return true if the ratio r exceeds our threshold α, which will be
determined in Section 5.

4.3 Method 2: Detecting TLB Evictions

The first method is susceptible to hypervisors that manipulate the TSC value.
For example, upon each cpuid trap, the hypervisor can deduct the time that
it spent in the exit handler from the value returned to rdtsc, which effectively
evades our first detection method. We will now describe a second method, which
does not fall for this evasion. Our second idea is again to detect whether the
hypervisor was invoked, though this time by inspecting cache evictions in the
TLB.

The idea behind our detection is to identify TLB entry evictions that were
caused by VM Exits. The intuition is that the hypervisor needs to execute code
and has to access data (e.g., the VM Exit reason), all of which requires memory
translations. The CPU will cache these memory translations in the TLB. This
inevitably changes the TLB, which we aim to detect. To this end, we allocate
fresh memory pages and access them, e.g., using a read operation. This precaches
the pages to the TLB. We then iterate twice over the pages and measure the
time to access the pages. However, in the second iteration, prior to reading, we
execute a cpuid. This will trigger a VM Exit, causing a context switch, evicting
entries of the pre-filled TLB. In such a case, we can measure a notable difference
in access times when revisiting the evicted page.

The details of the detection are as follows: After allocating n pages, we access
all pages once to fill the TLB. We access a page by writing a 4-byte value to the
start of the page. We then access all pages again i times, and for each iteration
we record the maximum access time. Out of those maxima we then compute



the minimum. The intuition behind this is that we want to find the minimum
time that it took for the slowest of all n page accesses. Using the minimum also
eliminates outliers. In addition, compared to similar measures like the median,
computing the minimum has a relatively small assembly code size and a lower
computational complexity. Then, we repeat this step, but execute cpuid before
each memory access. To set up equivalent conditions, we also access each page
once before entering the second outer loop. Finally, the ratio of both minima
t0 and t1 is computed and compared against a threshold β. Again, we refer the
reader to the evaluation for choosing the detection threshold.

A few implementation details require attention. First, after accessing a page,
we use the clflush instruction to invalidate the corresponding cache lines from
all levels of the processor cache. Doing so makes it more likely that timing
discrepancies actually stem from the TLB (and not from other types of caches).
Second, when we measure the page access time, we subtract the overhead of the
measuring method. We do this since the difference in access time for TLB misses
tends to be rather small and the influence of measurement overhead would thus
be too high otherwise.

Finally, we need to know how many pages we should allocate. The difficulty
here is that we have to prefill approximately as many pages as will fit in the
TLB. On the one hand, we need enough pages to fill the TLB and to guarantee
that the hypervisor evicts our TLB entries. On the other hand, choosing too
many pages will itself cause TLB evictions in all loops, regardless of cpuid,
and therefore undermine our detection. However, the exact number of pages
is unpredictable and depends heavily on the TLB size and its page eviction
strategy. To counter this problem, we will perform the detection multiple times
with various page numbers and consider a system to be running VT-x if at least
one detection finds a suspicious ratio. That is, we chose to run the algorithm for
n = 64, 128, . . . , 4096 pages, which covers typical TLB sizes.

4.4 Method 3: Stealth VM Exit Detection

The two aforementioned methods have the drawback that they make excessive
use of two instructions (cpuid and rdtsc) that may not be as common in benign
user-mode programs. This may raise suspicion in the analysis system, automati-
cally flagging the program as malicious. Therefore, we advance the current state
of research by studying stealth timing-based mechanisms, i.e., ones that do not
use suspicious instructions. To this end, we (i) have to avoid excessive use of
cpuid to trap the hypervisor, and (ii) require a reliable but less suspicious and
non-modifiable source for timing information.

To invoke the hypervisor, we first inspected less suspicious alternatives to
cpuid. However, the alternatives are either privileged or their VMM traps are
optional. Thus, we explore detection methods that conservatively use cpuid.
Note that cpuid is not suspicious per se. However, calling cpuid thousands of
times—as done in our first two methods—may seem suspicious. As we will show,
our discovered method will not trigger more than 3–4 cpuid calls on virtualized
systems, which makes this behavior indistinguishable from benign usage.



Replacing the timing source (rdtsc) is trickier, as reliable and accurate tim-
ing sources are scarce and only accessible with privileged instructions. To mea-
sure the duration of a cpuid instruction, we therefore leverage parallel compu-
tation. Technically, we create a program which spawns a thread B in its main
thread A. B continuously executes cpuid and increments a counter c after each
execution. After spawning B, A performs a busy wait until it notices that B has
started by examining c. After that, we wait a small amount of time by executing
a short busy loop after which we can inspect c. We determine that the system is
virtualized if the counter is smaller or equal than some threshold γ, following the
intuition that more cpuid executions fit in the time window on a native system
without context switches to they hypervisor. We will see in Section 5 that the
number of cpuid instructions being executed will be fairly low for virtualized
systems, which greatly contributes to the stealthiness of the detection

5 Evaluation

5.1 Local Experiments

The accuracy of our VT-x detection methods greatly depends on reasonable
detection thresholds. To determine the thresholds, we conducted the following
experiment: We created a tool that measures the ratio of the execution time of
cpuid to the execution time of nop. In addition, we measured the ratio of page
accesses as described. To account for different TLB sizes and eviction strategies,
we measured this ratio for n = 64, 128, 256, . . . , 4096 pages, where we use the
maximum of those ratios as the final ratio to on which base the detection. We
measure the access time of nop and cpuid 1000 times and take the minimum,
and the page accesses are measured 500 times for each page size. Finally, we
also measure the number of times cpuid was executed during the busy loop of
method 3. To create realistic conditions, we executed the tool 100 times each on
ten native Windows/Linux systems. The systems used nine distinct CPUs. In
addition, we executed the tool in 5 different Windows/Linux VMs using various
hypervisors running on Windows, Mac OS and Linux.

Method 1: VM Exit Overhead (M1) Figure 1a shows the cpuid/nop ratio.
The x-axis shows the hosts and the y-axis the distribution of the ratios in a
boxplot. The boxes show the 25–75% intervals, the whiskers indicate 10–90%
intervals. For nine out of the ten native hosts (n0–n9), the ratio is between 2
and 4. Host n4 is an outlier, with its ratio being constantly about 6.7. Hosts 11–
15 represent VMs (v0–v4). The majority of the ratios of the VMs are significantly
larger than the ratios of the native hosts. There is quite some variation among the
different VMs. This can mainly be attributed to the hypervisor. For example,
VMs 1 and 2 were running on the same physical machine; VM 1 was using
VMware, whereas VM 2 was using VirtualBox. Given those results, we choose
the threshold α = 9 as indicated by the horizontal dashed line in the figure.
Everything above this line indicates a VM, whereas everything below this line is
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Fig. 1: Boxplots of the local experiments. Hosts n0–n9 are native; hosts v0–v4 are
virtualized. The horizontal lines show the detection threshold that we derived from these
local experiments: α = 9 (left), β = 2 (center) and γ = 4 (right).

determined to be a native machine. We chose the threshold to tune the detection
rates of the local experiment towards a low false positive rate: Out of the total
of 1000 runs of the tool on the 10 native systems, we detect all systems as
native systems, which gives us a true negative (TN) rate of 100% and thus a
false positive (FP) rate of 0%. The executions on the VMs resulted in 17 ratios
being below 9, which implies a true positive (TP) rate of 96.6% and a false
negative (FN) rate of 3.4%. An adversary may adapt the detection thresholds
depending on her goal. In particular, it is reasonable for an attacker to trade off
false positives for false negatives, since losing a single victim is less critical than
having the malware exposed in an analysis environment.

Method 2: TLB Eviction Overhead (M2) Figure 1b shows the computed
ratios of the TLB-based measurements. As we can see, page accesses are more
prone to variance than the previous measurements. This can be explained by the
fact that the time window in which context switches would bias the measurement
is significantly longer for the second method. While in the first method a con-
text switch is only critical during the cpuid measurements, the second method
assumes that the process is not interrupted during the entire measurement pe-
riod, as otherwise the cached TLB entries would be overwritten (even on native
systems). We will discuss how the system load may influence the measurements
in Section 6. That being said, we see that for native hosts the median of the
ratios is still about 1 and the majority of the ratios is in the range [0.9, 2].

Similar to the previous results, we can again see a clear difference between
native and virtual machines, although the effect is smaller this time. This is
caused by the fact that a TLB miss is rather cheap compared to a context
switch caused by a VM Exit. VM v0 is an outlier, with the ratio being constantly
larger than 2600. We suspect that this is caused by some VMware artifact, as
the ratios of the other hypervisors are three orders of magnitude smaller. Using
these results, we set the threshold β = 2 for M2. That is, out of the 1000 native



runs we misclassify 17 runs, resulting in a TN rate of 98.3% and thus a FP rate
of 1.7%. On the VMs, we detect 24 out of 500 runs as native, which results in a
TP rate of 95.2% and a FN rate of 4.8%.

Finally, the attacker could combine both of the above methods and determine
that a system is virtualized if at least one of the methods says so. By doing this,
we would misclassify only 3 out of 500 virtualized executions, decreasing the FN
rate to 0.6%. Note that this would not change the FP rate, as only the TLB
detection produced FPs.

Method 3: Counting Thread (M3) Finally, we evaluate our stealth method
M3 separately from the non-stealth methods M1 and M2. Figure 1c shows the
results of the thread counting measurements, where the y-axis indicates how
often cpuid was executed. We can observe that the counter is much larger for
the native hosts as the cpuid instruction is faster in that case. In contrast, the
virtual hosts execute cpuid only a few times due to the significant overhead
caused by the VM Exit. Using the gathered results, we determine the threshold
γ = 4 as indicated by the horizontal line. Everything above this line is considered
a native system and everything below it is detected as a virtualized system. This
yields a TN rate of 99.9% (n8 fails the test once) and a TP rate of 99.2% (v3
fails this test 4 times).

5.2 Evasion Detection

Although the ratios of methods M1 and M2 work quite well in a normal setting,
they may be biased if virtualized sandboxes hide timing artifacts to evade VM
detection methods. For example, a hypervisor could trap rdtsc and set the TSC
to a constant c before returning to the guest. The ratio for both M1 and M2 would
then always be 1, which hides the hypervisor from our detection methods. To
detect such anti-detection methods, we add sanity checks on top of our detection.
In the following, we will describe four sanity checks, which we will use throughout
the remainder of the evaluation for the rdtsc-based methods. The thresholds
of these sanity checks were derived from the absolute values gathered from our
local experiment in Section 5.1.

Measuring overhead: First, we execute the measuring method without any
instructions to get the measuring overhead. We will use these results to detect
costly rdtsc traps. The measurements showed that rdtsc never takes more
than 100 cycles to execute (including the overhead introduced by mfence and
moving the TSC into a temporary register). To account for variance, we relax
this threshold and say that the system is virtualized if executing rdtsc takes
500 or more cycles.
Execution time of cpuid: Second, we inspect the absolute execution time of
cpuid to get a lower bound in order to detect if a hypervisor returns suspi-
ciously low values. Given the results of the measurements, we determine that a
hypervisor tampers with the TSC if executing cpuid takes less than 20 cycles.



Execution time of nop: Third, we verify if a hypervisor returns suspiciously
high values for the execution time of a nop instruction. Given the results, we
determine that a system is virtualized if executing a nop instruction takes 500
or more cycles.
TLB delta: Fourth, the execution time overhead introduced by a TLB miss
tends to be rather small compared to the time of a cached page access. The ratio
is thus sometimes not sufficient to detect a hypervisor, especially if both values
are rather large. To tackle this problem, we additionally inspect the absolute
difference between t0 and t1 in M2. We say that a system is virtualized if r ≥
β, or if t0 − t1 ≥ 150, a carefully chosen threshold. We observed that only
five runs resulted in a difference larger than 150. However, in those runs the
ratio was above 2, which means that we will not change the results for the
local experiments by including the TLB delta in the detection. Compared to
the previous three thresholds, this one was chosen rather aggressively. We did
this, since the previous parameters are used only to detect trivial anti-detection
methods and for this purpose a conservatively chosen threshold is sufficient.
However, in the case of TLB-based detection the window for optimization gets
quite narrow, which is why we chose a more aggressive optimization. We refer
to this optimized method as M2’.

5.3 PlanetLab

We then deployed our detection on a wider variety of systems. To this end, we
identified 239 stable nodes in the PlanetLab [3] testbed. To check if a PlanetLab
node is virtualized, we verified if the hypervisor bit returned by cpuid (with leaf
1) is set. Although a stealthy hypervisor does not have to set this bit, we find it
unlikely that stealthy hypervisors are present in PlanetLab. We found that 233
of the 239 nodes are native and six are virtualized. On all hosts, we performed
our detection methods 10000 times each, with α = 9, β = 2, γ = 4 and i = 1000.

M1 We detected 232 out of the 233 non-virtualized nodes as native systems
with 100% confidence. On the remaining native node, 3 out of the 10000 runs
misclassified the node as virtualized. Overall, this gives us a true negative rate
of 99.99%. All of the six virtualized nodes were correctly classified as virtualized
with 100% confidence, which gives us a true positive rate of 100%.

M2 We detected the non-virtualized nodes as native systems with an overall true
negative rate of 99.96%. However, the detection rate for 7 out of those 232 nodes
was below 99% and as low as 73.1% for one node. We suspect that this is due to
high system load, since concurrent memory accesses cause TLB evictions, which
does not favor M2. Out of the six virtualized nodes, we detected 3 nodes with
100% confidence and failed to detect the remaining three virtualized nodes. We
discovered that this is because our detection assumes a page size of 4 KiB, which
was not true for the PlanetLab nodes in question as they are using the Page Size
Extension feature of x86, which allows for pages larger than the traditional 4
KiB limit for performance reasons. This is not a restriction for an adversary in



practice, since huge pages are not enabled by default in Windows user space.
While huge pages are used by recent Windows kernels, enabling huge pages in
user-space processes on Windows requires the “lock pages in memory” privilege.

M3 For M3, we had to use a different set of 185 stable nodes in the PlanetLab
testbed, since the nodes of the first two methods were not available any longer
when the experiments for the third method was conducted. Out of those nodes,
182 were native and 3 nodes were virtualized. We detected both the virtualized
and the native systems with a confidence of 100% giving us a true positive and
a true negative rate of 100% each.

5.4 Sandboxes

So far we have only tested our methods in a controlled environment. In the follow-
ing, we will apply our detection methods in real-world use cases that are relevant
in practice: malware sandboxes. We thus uploaded the detection tool (cf. Sec-
tion 5.1) to 17 malware analysis services, such as VirusTotal and ThreatExpert.
Despite the fact that bare-metal sandboxes have been proposed [13,14], we argue
that most automated sandboxes are virtualized to cope with the masses of user
submissions. We thus assume that a sandbox uses VT-x, provided that the re-
ported CPU brand string indicates a processor model which supports hardware-
assisted virtualization.

To collect the detection results, we configured the tool to send the results to
a server under our control. In total, we received 76 measurement reports. We did
not have any influence on how often our sample was run per sandbox. Some of
the sandboxes repeatedly executed the same sample, i.e., increasing the number
of reports. In total, 74 of 76 reports indicated a processor model which supports
VT-x. The remaining two reports came from the same sandbox and showed
the CPU brand string “Intel(R) Atom(TM) CPU D525 @ 1.80GHz”. For this
sandbox, none of our detection methods indicated the presence of a hypervisor.
We group the remaining reports based on the host names of the analysis systems,
which clusters these 74 reports into 31 sandboxes. For a detailed overview of the
results, see Figure 2.

We observe that method 1 detects 89.19% of the sandboxes. The improve-
ments for method 2 increased the detection rate from 14.86% to 60.81%. By
combining method 1 and method 2—that is, we detect a system if M1 or M2
detects it—we can detect 90.54% of the sandboxes. By combining M1 with the
improved version of M2, we can improve again and get a detection rate of 95.95%.
This shows that the proposed methods work well in a real-world setting.

A few sandboxes remain undetected, which is where the sanity checks help.
The sanity checks themselves have a rather low detection rate of 18.92%. Worst,
the cpuid sanity check has a detection rate of 0%. But the nop and rdstc

measures alone are also not very helpful. However, recall that the sanity checks
are mainly relevant for systems that tamper with the TSC to evade detection.
When used in combination with the proposed two methods, they significantly
improve the detection rate. By combining the sanity checks with M1 and the



Sandbox M1 M2 M2’ M1+M2 M1+M2’ RDTSC CPUID NOP S S+M1+M2’

s0 5/5 2/5 3/5 5/5 5/5 0/5 0/5 0/5 0/5 5/5
s1 10/10 2/10 5/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10
s2 4/4 0/4 4/4 4/4 4/4 0/4 0/4 0/4 0/4 4/4
s3 2/2 0/2 0/2 2/2 2/2 0/2 0/2 0/2 0/2 2/2
s4 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s5 1/3 0/3 0/3 1/3 1/3 0/3 0/3 3/3 3/3 3/3
s6 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s7 3/3 1/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s8 1/1 0/1 0/1 1/1 1/1 0/1 0/1 1/1 1/1 1/1
s9 3/3 0/3 2/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s10 6/6 0/6 3/6 6/6 6/6 0/6 0/6 0/6 0/6 6/6
s11 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s12 1/1 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s13 . . . s17 3/5 0/5 3/5 3/5 4/5 4/5 0/5 4/5 4/5 5/5
s18 6/6 0/6 4/6 6/6 6/6 0/6 0/6 0/6 0/6 6/6
s19 3/3 0/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s20 1/1 1/1 1/1 1/1 1/1 0/1 0/1 1/1 1/1 1/1
s21 3/3 0/3 1/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s22 1/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s23 2/2 2/2 2/2 2/2 2/2 0/2 0/2 0/2 0/2 2/2
s24 0/2 1/2 2/2 1/2 2/2 2/2 0/2 2/2 2/2 2/2
s25, s26 2/2 0/2 1/2 2/2 2/2 0/2 2/2 2/2 2/2 2/2
s27 1/1 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1
s28 1/3 0/3 3/3 1/3 3/3 3/3 0/3 3/3 3/3 3/3
s29 3/3 0/3 3/3 3/3 3/3 0/3 0/3 0/3 0/3 3/3
s30 1/1 0/1 0/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1

66/74 11/74 45/74 67/74 71/74 9/74 0/74 14/74 14/74 74/74
89.19% 14.86% 60.81% 90.54% 95.95% 12.16% 0.00% 18.92% 18.92% 100.00%

Fig. 2: Detection results per sandbox (1st major column) for both methods, the improved
version of method 2 and their combinations (2nd major column), the sanity checks (3rd
major column) and the overall combination (4th major column). Sandboxes s13, . . . , s17
and s25, s26 are aggregated due to similar hostnames

improved version of method 2, we can detect all 74 hosts, resulting in a true
positive rate of 100%.

As the observed sandboxes are single-core VMs, there was no possibility to
evaluate M3 using this dataset. Instead, we successfully detected these hosts as
single-core systems using a simple load detection. In short, the load detection
method leverages the fact that the OS cannot schedule two threads in parallel on
single-core systems (or on systems with a high load). The load detection method
thus schedules two threads in parallel and measures how many rescheduling
events occur in a given time span. Rescheduling is an indicator for (i) high load
or (ii) a single-core system. Although only allowing multi-core systems seems to
restrictive at first, it is worth noting that this is also done by malware in practice
to avoid sandboxes. For example, the popular banking trojan Dyre shows its real
behavior only if executed on multi-core systems.

In conclusion, with high reliability, we could detect the virtualization in sand-
boxes using our timing-based methods. This demonstrates how a malware author
may use similar techniques to hide the actual behavior of the malware.



5.5 Stealth Sandbox

Seeing our success in identifying sandboxes, we now test whether cutting-edge
commercial sandboxes can evade our detection. We contacted a popular vendor
that advertises their sandbox technology as being evasion-resistant. The sandbox
is based on VT-x and implements a thin hypervisor. The vendor graciously
allowed us to run our detection sample in their latest development version of the
sandbox. We supplied the same tool to the system as for the other experiments.

In the first experiment, we managed to detect the presence of a hypervi-
sor with M1 and M2’. We then interacted with the vendor and explained our
detection methodologies. It turns out that their anti-evasion tricks mainly fo-
cused on removing system artifacts, and did not yet counter timing attacks. The
vendor then implemented a countermeasure to tackle timing-based detection.
Technically, the improved hypervisor measures its own execution time and then
subtracts its overhead from the actual TSC. VT-x features the TSC_OFFSET pa-
rameter so that the hypervisor can adjust the TSC accordingly—an anti-evasion
technique that was mentioned by Dinaburg et al [5].

We then re-ran our experiment on the updated sandbox. This time, the
timing-based detection failed to detect VT-x. In fact, the measured ratios in
M1 looked quite similar to the ones measured on native systems, rendering M1
ineffective. However, M2’ could still identify the virtualization. This is also intu-
itive, as the anti-evasion technique does not take into account overhead caused
by caching. M2’ does not measure the time spent in the hypervisor, but instead
measures caching side effects of context switches.

Similar to the public sandboxes, the commercial sandbox can also be detected
using M3 in combination with the load detection mechanism, as the sandbox
operates on a single-core system. In fact, our load check is more reliable and
cannot easily be fooled, unlike to existing methods such as reading the number
of cores using the Windows PEB. Thus it presents a generic detection method
for single-core systems.

5.6 ShellOS

Finally, we turn to systems that aim to detect potential shellcode in arbitrary
code. Snow et al. proposed ShellOS [29], a VT-x-based framework that de-
ploys heuristics to detect shellcode. ShellOS uses a small kernel coupled with
hardware-assisted virtualization by using the KVM hypervisor to detect and ana-
lyze shellcode. To this end, ShellOS uses the heuristic proposed by Polychronakis
et al. [23], monitoring and detecting accesses to the Windows PEB. We will eval-
uate whether we can combine our VT-x detection with an evasion for ShellOS.

push MAGIC

; is_vm := vm_detect ()

if (not is_vm)

pop edx

mov esi , [fs:edx+0x30 -MAGIC]

...
Fig. 3: ShellOS evasion.

Our goal is to convert a shellcode
that ShellOS flags as malicious to
one that is not detected. The ob-
vious idea in the form of if (vm)

{benign} else {shellcode} will,
however, not work, since ShellOS



uses the concept of execution chains. ShellOS will execute the payload from
each possible offset and will therefore flag the payload as malicious if it starts
executing from the shellcode offset. To understand how an adversary may over-
come this problem, recall that Windows shellcode usually starts by reading the
PEB with an instruction like mov esi, [fs:edx+030] where edx is set to zero
beforehand. The malicious behavior of all the following instructions depends on
this first instruction, which in turn depends on the content of one register (edx in
the example). Using this insight, we can evade ShellOS’s execution chains with
the idea illustrated in Figure 3. We push some magic random number MAGIC > 0
on the stack, and only if the detection indicates the presence of a native system,
we pop this magic number into edx. We then use this magic number in the cal-
culation of the PEB in the first instruction of the shellcode. If ShellOS executes
the code from any offset other than the actual start, the edx register will not
contain the right value to correctly calculate the PEB offset. If ShellOS starts
executing from the actual start, our detection will detect VT-x and the code will
not be flagged as malicious, since the PEB will not be calculated correctly in
this case either.

We injected the VM Exit-based detection method (M1) into the template
in Figure 3 with parameters i = 20 and α = 9. We reduced the number of
iterations to 20, since ShellOS imposes timeout limits on the payloads to be
executed. We injected several shellcodes with our detection methods, but we
intentionally left out the determining ratio check to provoke malicious behavior.
All those shellcodes were flagged as malicious by ShellOS. After including the
ratio check, ShellOS failed to detect the modified shellcodes, while the same
payloads were properly executed on native systems.

We did the same for TLB-based detection (M2). Unfortunately, ShellOS re-
sponded with errors and the debug traces indicated that something went wrong.
The ShellOS authors could not resolve the problem in the time available, which
is why we cannot evaluate TLB-based detection for this use case. Since ShellOS
does not support threading, we unfortunately could not evaluate M3 on ShellOS.

6 Discussion

In this section we discuss several aspects of our proposed methods, including
countermeasures, limitations when facing target systems that are virtualized,
other virtualization methods than VT-x and finally how an adversary can use
our methods to defeat multi-path exploration techniques

6.1 Countermeasures

Our detection methods are based on timing differences introduced by VM Exits.
To evade detection, the hypervisor may tamper with the time-stamp counter
(TSC) or avoid VM Exits. We first discuss techniques that aim to evade de-
tection. In addition, we describe a technique for how our detection methods
themselves can be detected at the hypervisor level.



Tampering with Timing Resources In principle, the hypervisor has complete
control of the timing resources. The hypervisor could disable rdtsc for use in
ring 3, subtract the VM Exit overhead or try to return sane estimated values.
Disabling the instruction is not a beneficial option, since the usage of rdtsc is
not malicious per se. Subtracting the VM Exit overhead works for protecting
against M1 as described in Section 5.5. It will, however, fail for the TLB based
detection method M2, for reasons described in the same section. Estimating sane
return values is not feasible in practice as it requires complete knowledge about
the emulated hardware.

Not Trapping cpuid Our detection methods rely on cpuid to trigger VM Exits.
Disabling these exits by the hypervisor would thus evade detection. However,
according to the Intel manuals, the VM Exit caused by cpuid cannot be disabled
by the hypervisor. Therefore, a potential hardware-based solution could be to
make traps to cpuid optional. But even then it would be likely that other timing
biases remain, as hypervisors may need to trap on system calls or page faults to
inspect host-based behavior.

Detecting Suspicious Timing-Based Evasion Instead of evading our methods,
the hypervisor can just try to detect them. This is useful for sandboxes that just
aim to find suspicious programs, rather than exploring their behavioral profile.
Our first two methods can be detected by the hypervisor due to the excessive use
of rdtsc and cpuid. If encountered too often, the program is at least suspicious.
However, this is no help to sandboxes that not only flag a program as malicious,
but also aim to reveal program behavior. Finally, as we have shown, an attacker
can even avoid excessive use of suspicious instructions by using counter-based
as opposed to timing-based detection.

6.2 Virtualization on Target Systems

The main use case of our methods is attacks that aim to evade virtualized anal-
ysis systems, such as sandboxes or other types of code analysis systems (like
ShellOS). Such evasions are effective if we assume that the actual target sys-
tems (the victims) are not virtualized. However, research has suggested that
virtualization will become more widespread in the future [2, 9, 32].

We argue that VM detection will still play an important role in the future.
First, when looking at consumer devices, the degree of virtualization is negligible.
Thus mass-targeting malware (such as ransomware, spambots, denial-of-service
bots, or banking trojans) does not risk losing many potential victims by declin-
ing to run on VMs, while it can hide its behavior in virtualized sandboxes. In
addition, even in targeted attacks, an adversary may be able to first spy on the
exact environment, including the virtualization technology (if any), and then
adapt her attack accordingly.



(a) (b) (c)

init

if a < b:

foo

else:

bar

init

cmp a, b

ja bar

foo:

...

jmp end

bar:

...

end:

init

mov reg , 1

sub a, b

sbb reg , 0

imul reg , dist

add reg , foo

jmp reg

foo:

...

jmp end

bar:

...

end:

Fig. 4: Overcoming multiple execution paths.

6.3 Multi-Path Exploration

Facing the problem of evasion, researchers proposed new techniques to analyze
the hidden behavior of evasive malware. A generic approach to counter evasive
behavior is exploring multiple execution paths (or multi-path exploration), as
introduced by Moser et al. [17]. The idea is to explore all input-driven parts of
the program to trigger behavior that may otherwise remain hidden. For instance,
assume program (a) in Figure 4, which first initializes, then does a check, and
if the check succeeds, executes foo, or bar otherwise. Using multiple execution
paths, we can explore all possible executions of the program, namely init→foo

and init→bar, regardless of the values of a and b.
Kolbitsch et al. [16] proposed to identify and escape execution-stalling code

during dynamic analysis. Their idea is to invert conditional branches once they
are detected as such, e.g., turn a greater-than operation to a less-or-equal, with
the goal to eventually explore all code regions. Related to this, Egele et al. [7] pro-
posed Blanket Execution, a technique to cover all instructions within a function
at least once during dynamic analysis [7]. In addition, the commercial sandbox
vendor VMray has announced a technique to trigger dormant program function-
ality by inverting branch conditions, leveraging the history of recent branches in
the Processor Tracing history of recent Intel CPUs1.All these techniques aim to
explore the entire functionality of a program or its functions.

We can overcome these approaches by converting conditional branches to
indirect jumps/calls. Doing so removes the outgoing edge of the source basic
blocks, as the address of the target basic block is computed dynamically. For
example, consider the assembly representation of program (a) in Figure 4 (b).
Multi-path execution would identify the conditional jump ja bar as a control
flow decision provided that a or b is considered interesting. As a consequence,
both possible execution paths will be identified and executed regardless of the
actual values of a and b. Now let dist be the distance between foo and bar

and consider program (c). If a is smaller than b, then the sub a, b instruction
will set the carry flag. Hence, the register reg will contain the address of foo

1
http://www.vmray.com/back-to-the-past-using-intels-processor-trace-for-enhanced-analysis/



and therefore the program will jump to foo. Conversely, if a ≥ b, reg will hold
the address of bar to which the program will jump. Programs (b) and (c) are
thus semantically equivalent. However, in (c), one cannot identify the branching
alternatives, since the conditional direct jump ja bar has been replaced with
the unconditional direct jump jmp reg. By applying this transformation, an
attacker can undermine multi-path execution to hide the malicious behavior of
the program.

6.4 Non-Intel Virtualization

In this paper we have limited our analysis to Intel VT-x. We have shown that VT-
x is the dominating virtualization technique used by sandboxes. In future work,
we investigate whether our results are also applicable to other virtualization
techniques, such as AMD-V. Due to the inherent timing artifacts introduced
by the hypervisor, it is likely that the same concepts also apply to AMD-V.
However, AMD-V enables the hypervisor to disable the cpuid trap, which is a
notable difference between the two virtualization solutions. Therefore, AMD-V
represents a stealthier alternative to VT-x. However, the presence of traps is
inherent to the concept of sandbox monitoring, which likely introduces detection
vectors other than cpuid traps.

7 Related Work

7.1 Virtualization Detection

In 2006, Ferrie [8] was one of the first to evaluate the transparency of software
emulators, reduced privileged guests and hardware-assisted virtualization. Ferrie
found bugs in the software emulators Hydra, Bochs and QEMU, which could be
used to detect their presence. For reduced-privilege guests of the time, such as
VMware, Virtual PC and Parallels, Ferrie found several artifacts. Ferrie con-
cluded that reduced privilege guests cannot hide their presence, as their design
does not allow them to intercept non-sensitive instructions, which will always
imply detectable behavior.

Ferrie also mentioned timing-based attacks to detect hardware-assisted virtu-
alization [8], such as measuring the overhead caused by VM Exits or considering
a TLB-based attack. However, despite giving the general idea, he did not de-
scribe technical challenges, nor demonstrate or evaluate the methods. Research
similar to Ferrie’s work was conducted by Paleari et al. [20] in 2009 and by
Raffetseder et al. [24] in 2007 to detect software emulators by exploiting im-
plementation bugs. Raffetseder et al. additionally examined VT-x and observed
that it is not possible to disable caching in a virtualized environment. We were
inspired by these initial ideas, but are the first to go into detail and bring them
to a realistic setting of user-mode code. In addition, we are the first to present
a thorough evaluation of timing-based attacks to detect hardware-assisted vir-
tualization in real-world use cases. Third, we also proposed a stealth method



that is much harder to detect than existing approaches. Finally, we have demon-
strated the risk that adversaries may combine the detection mechanisms to evade
multi-path exploration systems.

In 2006, Rutkowska proposed a rootkit based on hardware-assisted virtual-
ization called Blue Pill2. Blue Pill is a thin hypervisor which will virtualize the
existing OS once started. By doing so, the hypervisor (and therefore the at-
tacker) gains full control over the OS. Blue Pill can be detected in the same way
any VM can be detected by using our methods. Garfinkel et al. [10] proposed
a TLB-based solution without using timing resources to detect such rootkits by
manipulating the page table entries. Manipulating those entries is, however, not
possible in user mode and therefore outside of the range of our threat model
where malware usually operates.

7.2 Sandboxes and Evasion

In addition to the discussed VM detection methods, others have documented
the problem of evasive malware through real-world studies. Chen et al. [2] were
the first to study the behavior of malware that tries to detect VMs. They ran
6900 different malware samples under different environments and noted that 4%
of the samples reduced their malicious behavior in the presence of a VM.

Balzarotti et al [1] propose a system that records the system call trace of a
program when it is executed on a non-virtualized reference system. This trace
is then compared against the trace of the same program being executed on a
virtualized system, revealing possibly split behavior of the malware. Lindor-
fer et al. [16] describe a similar system and additionally introduce techniques for
distinguishing between spurious differences in behavior and actual environment-
sensitive behavior to cope with false positives.

The phenomenon of environment-aware malware forced sandbox maintain-
ers and researchers to develop more transparent systems which are harder to
detect. Dinaburg et al. proposed Ether [5], a malware analysis system using
hardware-assisted virtualization which aims at remaining transparent to mali-
cious software. Ether tries to maintain a clear time-stamp counter, as discussed
in Section 6. However, Ether is still prone to TLB-based detection methods,
which the authors of Ether classify as “architectural limitations” of VT-x. Ad-
ditionally, Pék et al. presented a detection method for Ether [22]. Their method
builds upon the observation that between two rdtsc instructions, Ether tends
to increase the TSC by only 1 as long as there are no trapping instructions in be-
tween. This is an implementation-specific artifact that is not necessarily shared
by other sandboxes.

To cope with the fundamental difficulties of creating a truly transparent
hypervisor, Kirat et al. have suggested using bare-metal sandboxes [13, 14]. Al-
though bare-metal sandboxes can evade VM-based detection mechanisms, they
are less scalable and harder to maintain than virtualized sandboxes. Alterna-
tively, Moser et al proposed multi-path exploration systems [17]. We have shown

2 http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html



that adversaries can evade those systems and render them ineffective. The same
holds for the brute force mechanism deployed by ShellOS [29], which simply aims
to execute shellcode from every possible offset.

8 Conclusion

We have shown that hardware-assisted virtualization can be reliably detected
by an adversary using timing-based measures. Unfortunately, not all of these
methods can be detected as such, nor is there an effective and transparent way to
evade all of them. This threatens important virtualized security infrastructures,
such as malware sandboxes and state-of-the-art shellcode detection systems. Our
attacks against multi-path exploration systems demonstrated that there is a need
for further research to restore the guarantees that the full (possibly hidden)
behavior of malicious code can be revealed with dynamic code analysis.
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